Microwave-mediated reductive amination-cyclization of 4-aryl-4oxobutanoates: Facile synthesis of 3-methylidene-5-phenyl-2,3dihydropyrrolidones

H SURYA PRAKASH RAO* and S P SENTHILKUMAR
Department of Chemistry, Pondicherry University, Pondicherry 605 014, India
e-mail: hspr@yahoo.com

MS received 2 September 2003; revised 12 March 2004

Abstract

Microwave-mediated three-component condensation of 4-aryl-4-oxobutanoates with ammonium formate furnishes 3 -methylidene-5-phenyl-2,3-dihydropyrrolidones in good yield within 2 min . The pyrrolidone products were characterized on the basis of spectral data and X-ray crystal structure analysis. The reaction is found to be general and a variation in the ester and aryl moieties is possible. However, when alkylammonium formate is used only amide products are formed.

Keywords. Microwaves; three-component coupling; pyrrolidones; ammonium formate.

1. Introduction

Some tobacco alkaloids, which are primarily responsible for addictive properties, viz. nicotine, ${ }^{1}$ nornicotine ${ }^{2}$ and N -acetylnicotine, ${ }^{3}$ incorporate 2arylpyrrolidine structural motif. Surprisingly, in spite of their obvious importance, only a very few N-alkyl derivatives of nicotine are known. We planned to synthesize several variously N -alkylated derivatives of nicotine to evaluate biological activity. We reasoned that they could be easily generated from the reduction of corresponding N -alkyl-5-aryl-2-pyrrolidones, which could be readily generated by reductive amination of 4-aryl-4-oxobutanoates by applying our newly developed microwave mediated Leuckart reaction conditions. ${ }^{4}$ In addition, appropriately hydroxy substituted N -alkyl-5-aryl-2pyrrolidones could serve as precursors to ethanolamine based chiral auxiliaries. During the course of this targeted investigation, we found a facile microwave mediated synthesis of 3-methylidene-5-phenyl-2,3-dihydropyrrolidones and the results are described in this paper.

2. Results and discussion

When a solution of methyl-4-oxo-4-phenylbutanoate 1 in polyethylene glycol-200 (PEG-200) was

[^0]treated with ammonium formate under microwave irradiation at 370 W for 2 min , the reaction furnished an orange coloured methyl Z-4-(2-oxo-5-phenyl-2,3-dihydro-1 H -3-pyrrolyliden)-4-phenylbutanoate 5 in 91% yield instead of 5-phenyl-2-pyrrolidone (scheme 1).

The structure of the three-component condensation product 5 was confirmed on the basis of spectral and analytical data. The UV spectrum showed $\lambda_{\text {max }}$ at 391 ($\log \varepsilon=4 \cdot 66$) due to extensive conjugation present in the molecule. The IR spectrum showed carbonyl absorption at $v 1729$ and $1681 \mathrm{~cm}^{-1}$ for ester and lactam functional groups, respectively. The ${ }^{1} \mathrm{H}$ NMR spectrum showed aliphatic and aro-

$$
\begin{gathered}
\text { 1, 5: } \mathrm{X}=\mathrm{H}, \mathrm{R}=\mathrm{CH}_{3} ; \mathbf{2 , 6} \mathbf{6}: \mathrm{X}=\mathrm{H}, \mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}_{3} ; \mathbf{3}, \mathbf{7}: \\
\mathrm{X}=\mathrm{CI}, \mathrm{R}=\mathrm{CH}_{3} ; \mathbf{4}, 8: \mathrm{X}=\mathrm{R}=\mathrm{H} \\
\text { Reagents and conditions: } \mathrm{i} . \mathrm{HCOONH} 4, \\
\mathrm{PEG}-200, \mu v, 370 \mathrm{~W}, 2 \mathrm{~min}
\end{gathered}
$$

Scheme 1.

matic hydrogens in the ratio of $1: 1 \cdot 5$. A peak at δ $10 \cdot 7 \mathrm{ppm}$ as a broad singlet was due to the presence of NH and a sharp singlet at $\delta 5.95 \mathrm{ppm}$ was due to olefinic hydrogen. The presence of two triplets at δ $3.67(J=8.2 \mathrm{~Hz}) \mathrm{ppm}$ and $\delta 2.53(J=8.0 \mathrm{~Hz}) \mathrm{ppm}$ were due to two adjacent methylenes next to ester carbonyl group. The ${ }^{13} \mathrm{C}$ NMR spectrum showed seventeen signals out of which three were of aliphatic carbons, four were olefinic carbon atoms, eight aromatic carbons and one carbonyl group. The DEPT spectrum revealed the presence of one methyl, two methylene and seven methine carbons. The mass spectrum showed a molecular ion peak at 333, which was an additional support for the structure of the compound and showed the molecular formula to be $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{NO}_{3}$. Finally the assigned structure was confirmed on the basis of single crystal X-ray determination ${ }^{5}$ (figure 1) as 5 with the stereochemistry of double bond being Z. The crystal structure shows that 5 stabilizes in dimeric form through $\mathrm{CH}-\mathrm{O}$ hydrogen bonding interactions.

Literature survey revealed that compound of the type 5 has a long history. At the turn of twentieth century, Klobb isolated an orange product from the reaction of ester $\mathbf{1}$ with ammonium acetate. ${ }^{6}$ Fiesselmann and Ehmann have elaborately studied the reaction and assigned structure to acid derivative of 5. ${ }^{7}$ Treibs and co-workers studied further transformations of 5 for the synthesis of some nitrogen heterocycles. ${ }^{8}$ Subsequently, Loev and co-workers

Figure 1. Crystal structure of methyl-4-(2-oxo-5-phenyl-2,3-dihydro-1H-3-pyrrolyliden)-4-phenylbutanoate (5).
synthesized several N-phenyl derivatives of 5. ${ }^{9}$ Soriano-Garcia and co-workers reported the crystal structure of its E-isomer. ${ }^{10}$ However, mechanistic aspects of the transformation as well as complete characterization of 5 and its derivatives based on high resolution ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data were not investigated.

Our present work showed that the three-component condensation involving two moles of methyl-4-oxo-4-phenylbutanoate and one mole of ammonium formate leading to the formation of pyrrolidone $\mathbf{5}$ takes place within two minutes under microwave irradiation. Conventional heating with ammonium acetate requires more than 7 h in methanol reflux. Thus, there is about 2×10^{2} times rate enhancement. For reasons presently not clear, microwave mediated reactions appear to favour the formation of Z-isomer 5 rather than the more stable E-isomer. Moreover, unlike the microwave mediated reductive amination of 1,5 -diketones, which lead to the formation of piperidine derivatives, the present reaction furnishes pyrrolidone derivatives of the type 5 from 4-phenyl4 -oxobutanoates. ${ }^{11}$
The mechanism for the formation of $\mathbf{5}$ is given in scheme 2. Decomposition of ammonium formate under high temperature releases ammonia and formic acid. Dehydrative condensation of ammonia with the carbonyl group of the ketoester $\mathbf{1}$ provides amide intermediate 9. Subsequently, 9 undergoes intramolecular cyclization involving ester carbonyl to furnish 2 -pyrrolidone derivative 11 via protonated imine $\mathbf{1 0}$. The pyrrolidone derivative $\mathbf{1 1}$ may stabilize as $\mathbf{1 2}$ via keto-enol tautomerism. The enol $\mathbf{1 2}$ undergoes condensation with another molecule of ketoester $\mathbf{1}$ to give the pyrrolidone derivative $\mathbf{5}$ via an intermediate 13.

This three-component condensation reaction was further extended to ethyl ester $\mathbf{2}$ as a follow-up on the mechanistic studies on the formation of the product 5. The ketoester 2 also undergoes the condensation reaction in a similar fashion to give the pyrrolidone derivative 6 in about 88% as a mixture of isomers (scheme 1). Based on ${ }^{13} \mathrm{C}$ NMR spectral data the ratio of Z - and E-isomers is calculated to be 70:30.

The condensation reaction was next extended to 4 -chloro-substituted ketoester 3. This reaction also follows the same course and furnishes a mixture of isomers 7 in about 92% yield (scheme 1). Integration of the relevant signals in the ${ }^{13} \mathrm{C}$ NMR spectrum confirms Z - and E-ratio as $50: 50$.

9

Scheme 2.

Reagents and conditions: i. $\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2} / \mathrm{HCOOH}, \mathrm{PEG}-200, \mu \nu, 370 \mathrm{~W}$, 2 min ; ii. $\mathrm{P}_{2} \mathrm{O}_{5} /$ benzene or toluene, reflux; ii. Conc. $\mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{DCM}$, rt.

Scheme 3.

The reaction was then attempted on 4-keto acid 4 with the intention to evaluate the role of an ester function in the condensation. We found that the reaction proceeds similar in a manner to that of the ester 1. This reaction furnishes a mixture of geometrical isomeric acids $\mathbf{8}$ in about 54% yield (scheme 1.41). The ratio of Z - and E-isomer is found to be $70: 30$.

Next, the scope of the reaction was extended to the microwave mediated condensation of ketoester 1 with 2-hydroxyethylammonium formate with an intention to generate N -alkyl derivatives of 5-aryl-2pyrrolidones. However, the reaction produces the amide, N -1-(2-hydroxyethyl)-4-oxo-4-phenylbutanamide 14 formed in 54% yield (scheme 3).

Structure of the amide 14 is assigned on the basis of IR, ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectral data. IR spectra show the presence of hydroxyl absorption at V $3460 \mathrm{~cm}^{-1}$ and amide carbonyl at $v 1699 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR spectra show a broad singlet at $\delta 6.7 \mathrm{ppm}$ revealing the presence of an NH group. The presence of four triplets $\delta 2.60(J=6.5 \mathrm{~Hz}), \delta 3.34(J=$
$6.5 \mathrm{~Hz}), \delta 3.38(J=5.18 \mathrm{~Hz}), \delta 3.67(J=5.06 \mathrm{~Hz})$ ppm reveal the presence of four CH_{2} groups in the molecule. ${ }^{13} \mathrm{C}$ NMR spectra show ten carbon signals out of which are two carbonyl, four aromatic and four aliphatic carbons.

Efforts towards the synthesis of 1-(2-hydroxy-ethyl)-5-phenyl-2-pyrrolidinone $\mathbf{1 5}$ from the cyclization of butanamide 14 with $\mathrm{P}_{2} \mathrm{O}_{5}$ in benzene or with conc. sulphuric acid in DCM did not yield desired results. Only extensive decomposition of the reaction mixture was noted (scheme 3).

Thus, in this investigation we have shown that microwave-mediated three component coupling of ketoester 1 with ammonium formate takes place readily to yield pyrrolidone ester 5 within 2 min . The reaction is general for ester and aryl moieties. However, changes in ammonium formate lead to formation of amide only. Presently we are investigating incorporating the orange-coloured product of the type 5 on a polymer matrix to study physicochemical properties of the resulting product.

3. Experimental

3.1 General

The progress of all the reactions was monitored by TLC (TLC silica gel; Qualigens or TLC alumina: SRL, India) using hexanes/ethyl acetate mixture as an eluent. Column chromatography was accomplished on silica gel (100-200 mesh, Acme synthetic chemicals) using hexanes/ethyl acetate mixture as an eluent. IR spectra were recorded as solutions of KBr or neat using an ABB Bomem MB-104 FT-IR spectrometer. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded in CDCl_{3} or $\mathrm{CDCl}_{3}: \mathrm{CCl}_{4}(1: 1)$ using a JEOL 400 MHz , Varian 300 MHz or Bruker 300 MHz NMR spectrometer. The mass spectra were recorded on a Finnigan MAT 8230 or JEOL DX-303 mass spectrometer. The elemental analysis was carried out on an Elementar vario EL (Germany) apparatus. The microwave reactions were carried out using BPLSanyo (India), mono-made, multi power; power source: $230 \mathrm{~V}, 50 \mathrm{~Hz}$, microwave frequency: 2450 MHz microwave oven. The starting materials $\mathbf{1 - 4}$ were prepared by following the literature procedure. ${ }^{12}$

3.2 General procedure for reductive amination-

 cyclization of methyl-4-oxo-4-phenylbutanoate (1) under microwave irradiationMethyl-4-oxo-4-phenylbutanoate, compound 1 (682 mg , 3.75 mmol) was dissolved in 6 mL PEG-200, ammonium formate ($895 \mathrm{mg}, 15 \mathrm{mmol}$) was added and the solution was subjected to microwave irradiation at 370 W for 2 min . The reaction was monitored by TLC and showed the formation of a product. The reaction mixture was cooled to room temperature, dissolved in 30 mL dichloromethane (DCM) and poured over ice-cooled water. The organic layer was separated and washed water $(3 \times 15 \mathrm{~mL})$ to remove excess PEG-200 present in the reaction mixture. The organic layer was then washed with brine solution $(2 \times 10 \mathrm{~mL})$ and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The DCM solution was concentrated under vacuo and the resulting mixture was subjected to column chromatography (silica gel 100-200 mesh) using 15% EtOAc-hexanes as eluent to give 5 ($586 \mathrm{mg}, 91 \%$).
3.2a Methyl-4-(2-oxo-5-phenyl-2,3-dihydro-1H-3-pyrrolyliden)-4-phenylbutanoate (5): An orangecoloured solid; m.p. $136-138^{\circ} \mathrm{C} ; R_{f}=0.18(10 \%$ EtOAc-hexanes); UV (MeOH) $\lambda_{\max } 391(\log \varepsilon=$ 4.66); IR (KBr) v 699, 756, 903, 1168, 1279, 1448,

1681, 1729, $3191 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3} /$ $\left.\mathrm{CCl}_{4}, 1: 1\right) \delta 2.53(t, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.61(s, 3 \mathrm{H})$, $3.67(t, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.95(s, 1 \mathrm{H}), 7.25-7.43(m$, $8 \mathrm{H}), 7 \cdot 64(d, J=8 \cdot 1 \mathrm{~Hz}, 2 \mathrm{H}), 10 \cdot 7$ (br $s, 1 \mathrm{H}) \mathrm{ppm}$; ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{CCl}_{4}, 1: 1\right) \delta 28 \cdot 70$, $32 \cdot 62,51 \cdot 42,99 \cdot 16,125 \cdot 15,128 \cdot 55,128 \cdot 64,128 \cdot 83$, $128 \cdot 90,129 \cdot 01,130 \cdot 07,130 \cdot 97,141 \cdot 12,141 \cdot 53$, 151.96, 171.29, 172.75 ppm ; LRMS $333\left(10 \%, M^{+}\right)$, 301 (5%), 273 (49%), 144 (100%), 116 (39%), 89 (44\%), 63 (25\%); Analysis: Calcd. for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{NO}_{3}$: C, $75.13 ; \mathrm{H}, 4.88 ;$ N, 4.04%. Found: C, $75 \cdot 10$; H, 4.90 ; N, 4.01%.

3.3 Reductive amination-cyclization of ethyl-4-oxo-4-phenylbutanoate (2) with ammonium formate

Following the general procedure described above, the reaction of ethyl-4-oxo-4-phenylbutanoate $\mathbf{2}$ $(957 \mathrm{mg}, 4.65 \mathrm{mmol})$ and ammonium formate $(1.17 \mathrm{~g}$, 18.6 mmol) in 8 mL PEG-200 resulted in ethyl 4-(2-oxo-5-phenyl-2, 3-dihydro-1H-3-pyrrolyliden)-4-phenylbutanoate 6, which was purified by column chromatography.
3.3a Ethyl-4-(2-oxo-5-phenyl-2,3-dihydro-1H-3-pyrro-lyliden)-4-phenylbutanoate (6): An orange-coloured solid; Yield 707 mg , (88%); m.p. $140-142^{\circ} \mathrm{C}$; $R_{f}=0 \cdot 18\left(10 \%\right.$ EtOAc-hexanes); UV (MeOH) $\lambda_{\text {max }}$ 391 ($\log \varepsilon=4.34$); IR (KBr) \vee 698, 757, 903, 1045, 1177, 1281, 1451, 1592, 1684, 1730, 2985, 3070, $3176 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1 \cdot 18(t$, $3 \mathrm{H}), 1.24(t, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.42(t, 2 \mathrm{H}), 2.51$ $(t, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.07(t, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.65(t$, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.04(q, 2 \mathrm{H}), 4.08(q, 2 \mathrm{H}), 5.96$ $(s, 1 \mathrm{H}), 6 \cdot 29(s, 1 \mathrm{H}), 7 \cdot 34-7 \cdot 52(\mathrm{~m}, 20 \mathrm{H}), 9.60(\mathrm{br} s$, $1 \mathrm{H}), 9.87(b r s, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (75 MHz , CDCl_{3}) $\delta 14 \cdot 15,14 \cdot 19,28 \cdot 30,30 \cdot 93,32 \cdot 63,32 \cdot 72$, $32 \cdot 76,60 \cdot 39,60 \cdot 69,97 \cdot 92,99 \cdot 62,124 \cdot 95,128 \cdot 06$, $128 \cdot 16,128 \cdot 37,128 \cdot 64,128 \cdot 94,129.04,129.21$, $129.85,130 \cdot 40,130 \cdot 42,138 \cdot 48,140 \cdot 58,140 \cdot 65$, $141 \cdot 89,152 \cdot 69,170 \cdot 80,172 \cdot 80,172 \cdot 81 \mathrm{ppm}$; LRMS 347 ($34 \%, M^{+}$), 301 (16%), 273 (100%), 260 (8%), 244 (20\%), 230 (8%), 104 (14\%); Analysis: Calcd. for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{NO}_{3}$: C, $76.03 ; \mathrm{H}, 6.08 ; \mathrm{N}, 4.03 \%$. Found: C, 76.06 ; H, 6.04; N, 4.07%.

3.4 Reductive amination-cyclization of methyl-4-(4-chlorophenyl)-4-oxobutanoate (3) with ammonium formate

Following the general procedure described above, the reaction of methyl-4-(4-chlorophenyl)-4-oxobut-
anoate 3 ($307 \mathrm{mg}, 1.36 \mathrm{mmol}$) and ammonium formate ($343 \mathrm{mg}, 5.44 \mathrm{mmol}$) in 4 mL PEG-200 furnished methyl-4-(4-chlorophenyl)-4-[5-(4-chlorophe-nyl)-2-oxo-2, 3-dihydro-1 H-3-pyrrolyliden]butanoate 7 which was purified by column chromatography.
3.4a Methyl-4-(4-chlorophenyl)-4-[5-(4-chlorophe-nyl)-2-oxo-2, 3-dihydro-1H-3-pyrrolyliden]butanoate (7): An orange-coloured solid; Yield: 244 mg (93\%); m.p. $216-218^{\circ} \mathrm{C} ; R_{f}=0.19(10 \%$ EtOAchexanes); UV (MeOH) $\lambda_{\text {max }} 400(\log \varepsilon=4 \cdot 23)$; IR (KBr) v 686, 768, 833, 899, 1008, 1091, 1164, 1284, 1436, 1490, 1591, 1683, 1735, 3088, $3173 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.41$ $(t, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.49(t, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.49$ $(t, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.02(t, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.57(s$, 3H), $3 \cdot 59(s, 3 H), 5 \cdot 89(s, 1 H), 6 \cdot 24(s, 1 H), 7 \cdot 26-$ $7.49(m, 16 \mathrm{H}), 9.73(s, 1 \mathrm{H}), 10.09(s, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 28.34,32 \cdot 26,32 \cdot 41$, $32 \cdot 48,51 \cdot 71,51 \cdot 86,97 \cdot 99,99 \cdot 50,126 \cdot 02$, $126 \cdot 20$, $128 \cdot 08,128 \cdot 10,128 \cdot 35,128 \cdot 85,129 \cdot 17,129 \cdot 21$, $129.91,130 \cdot 02,130 \cdot 66,130 \cdot 71,134 \cdot 25,134 \cdot 86$, $135 \cdot 11,135 \cdot 28,136 \cdot 62,140 \cdot 16,141 \cdot 33,149 \cdot 09$, $151 \cdot 40,169 \cdot 50,170 \cdot 61,172 \cdot 65,173 \cdot 00 \mathrm{ppm}$; LRMS $405\left(6 \%, M^{+}+4\right), 403\left(28 \%, M^{+}+2\right), 401(38 \%$, M^{+}), 369 (21%), 345 (28%), 343 (69%), $341(100 \%)$, 307 (29%), 247 (24%), 233 (24%), 138 (56%), 113 (12%), 111 (34%), 85 (38%), 57 (94%); Analysis: Calcd. for $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{Cl}_{2} \mathrm{NO}_{3}$: $\mathrm{C}, 62.71 ; \mathrm{H}, 4.26 ; \mathrm{N}$, 3.48%. Found: C, 62.75 ; H, 4.29 ; N, 3.52%.

3.5 Reductive amination-cyclization of 4-oxo-4phenylbutanoic acid (4) with ammonium formate

Following the general procedure described above, the reaction of 4-oxo-4-phenylbutanoic acid 4 ($700 \mathrm{mg}, \quad 3.93 \mathrm{mmol}$) and ammonium formate ($990 \mathrm{mg}, 15 \cdot 7 \mathrm{mmol}$) in 6 mL PEG-200 yielded 4-(2-oxo-5-phenyl-2,3-dihydro-1H-3-pyrrolyliden)-4-phenylbutanoic acid 8 which was purified by column chromatography.
3.5a 4-(2-Oxo-5-phenyl-2,3-dihydro-1H-3-pyrrol-yliden)-4-phenylbutanoic acid (8): An orange solid; Yield 340 mg , (54%); m.p. $222-224^{\circ} \mathrm{C}$; $R_{f}=0.23\left(10 \%\right.$ EtOAc-hexanes); UV (MeOH) $\lambda_{\text {max }}$ $391(\log \varepsilon=4 \cdot 16)$; IR (KBr) v 698, 766, 906, 1160, $1212,1278,1427,1446,1493,1599,1683,1706$, 3062, $3169 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}+$ drop of DMSO- d_{6}) $\delta 2 \cdot 39(t, J=12 \cdot 33 \mathrm{~Hz}, 2 \mathrm{H}), 3 \cdot 0(\mathrm{br} s$, $1 \mathrm{H}), 3.58(t, J=12.35 \mathrm{~Hz}, 2 \mathrm{H}), 5.90(d, J=3.3 \mathrm{~Hz}$,
$1 \mathrm{H}), 7 \cdot 31-7 \cdot 44(\mathrm{~m}, 6 \mathrm{H}), 7 \cdot 54-7 \cdot 64(\mathrm{~m}, 4 \mathrm{H}), 10 \cdot 08$ (br s, 1H) ppm; ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}+\right.$ drop of DMSO- d_{6}) $\delta 27 \cdot 28,32 \cdot 09,98 \cdot 58,127 \cdot 89,128 \cdot 34$ (2C), 129.61, 129.93, $140 \cdot 25,140 \cdot 71,150 \cdot 44$, 169.72, 174.07 ppm ; LRMS 319 (54\%, M^{+}), 273 (100\%), 230 (33\%), 182 (53\%), 127 (72%), 89 (88%), 57 (52%); Analysis: Calcd. for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{NO}_{3}$: C, $75 \cdot 22$; H, 5.35 ; N, 4.39%. Found: C, $75 \cdot 26$; H, $5 \cdot 38$; N, 4.43%.

3.6 Reductive amination-cyclization of methyl-4-oxo-4-phenylbutanoate (1) with 2-aminoethylammonium formate

2-Amino-1-ethanol ($634 \mathrm{mg}, 10 \cdot 4 \mathrm{mmol}$) was taken in a clean 10 mL conical flask that was kept in icesalt mixture and formic acid ($479 \mathrm{mg}, 10.4 \mathrm{mmol}$) was added drop by drop till the effervescence ceased. To this solution 4 mL PEG-200 was added followed by methyl-4-oxo-4-phenylbutanoate $\mathbf{1}(199 \mathrm{mg}$, 1.04 mmol). The contents of the flask were exposed to microwave irradiation at 370 W for 2 min . After completion of the reaction (TLC) the reaction mixture was cooled to room temperature, diluted with 30 mL DCM and poured over ice-cooled water. The organic layer was separated and washed with water $(3 \times 15 \mathrm{~mL})$, brine solution $(2 \times 10 \mathrm{~mL})$ and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The DCM solution was concentrated under vacuo and the resulting mixture was subjected to column chromatography (silica gel 100-200 mesh) using 20% EtOAc-hexanes as an eluent to furnish amide 14.
3.6a N-1-(2-Hydroxyethyl)-4-oxo-4-phenylbutanamide (14): Yield: $140 \cdot 1$ (54\%); $R_{f}=0.21$ (10% EtOAchexanes); IR (neat) v 696, 761, 992, 1072, 1176, 1208, 1413, 1448, 1543, 1699, 2882, 2928, $3460 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.60$ $(t, J=6 \cdot 5 \mathrm{~Hz}, 2 \mathrm{H}), 3.34(t, J=6 \cdot 5 \mathrm{~Hz}, 2 \mathrm{H}), 3 \cdot 38(t$, $J=5 \cdot 18 \mathrm{~Hz}, 2 \mathrm{H}), 3.67(t, J=5.06 \mathrm{~Hz}, 2 \mathrm{H}), 6.7(b r$ $s, 1 \mathrm{H}), 7.43(t, J=7 \cdot 6 \mathrm{~Hz}, 2 \mathrm{H}), 7 \cdot 54(t, J=7 \cdot 36 \mathrm{~Hz}$, $1 \mathrm{H}), 7.94(d, \quad J=7.28 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 30 \cdot 19,34 \cdot 06,42 \cdot 51,61 \cdot 92$, $126 \cdot 03,128 \cdot 12,128 \cdot 68,133 \cdot 40,136 \cdot 56,173 \cdot 37$, 199.54 ppm .
3.7 Reaction of N-1-(2-hydroxyethyl)-4-oxo-4-phenylbutanamide (14) with $\mathrm{P}_{2} \mathrm{O}_{5}$

To N-1-(2-hydroxyethyl)-4-oxo-4-phenylbutanamide 14 ($102 \mathrm{mg}, 0.45 \mathrm{mmol}$) taken in 3 mL of benzene
phosphorous pentoxide (10 mg) was added and the resulting reaction mixture was heated at reflux. The progress of the reaction was monitored by TLC and showed no product formation even after 48 h . Similarly, there was no reaction even when toluene was used in place of benzene.
3.8 Reaction of N-1-(2-hydroxyethyl)-4-oxo-4-phenylbutanamide (14) with $\mathrm{H}_{2} \mathrm{SO}_{4}$

To N-1-(2-hydroxyethyl)-4-oxo-4-phenylbutanamide $14(48 \mathrm{mg}, 0.22 \mathrm{mmol})$ taken in 2 mL of dichloromethane, a catalytic amount of conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ was added and stirred at room temperature. There was no reaction (TLC) even after 24 h and there was only decomposition.

Acknowledgements

HSPR thanks University Grants Commission, UGCSAP and Council of Scientific \& Industrial Research, New Delhi for financial assistance. SPSK thanks CSIR for a fellowship. We thank Prof A Srikrishna, IISc, Bangalore and Prof Hans W Scheeren, University of Nijmegen, Nijmegen, The Netherlands for spectra and help.

References

1. Dawson R F 1941 Adv. Enzymol. 41123
2. (a) Leete E and Bell U M 1959 J. Am. Chem. Soc. 81 4358; (b) Dawson R F 1945 J. Am. Chem. Soc. 63 503
3. Warfield A H, Galloway W D and Kallianos A G 1972 Phytochemistry 113371
4. Rao H S P, Jeyalakshmi K and Senthilkumar S P 2002 Tetrahedron 582189
5. Any queries regarding crystal structure of $\mathbf{5}$ should be addressed to R Gelder, Crystallography Laboratory, Department of Inorganic Chemistry, University of Nijmegen, 6525 ED, Nijmegen, The Netherlands
6. (a) Safaryan E V, Grigoryan G V and Agbalyan S G 1986 Arm. Khim. Zh. 3938 CAN: 1987: 67037; (b) Klobb M T 1898 Bull. Chim. Soc. Fr. 19389
7. Fiesselmann H and Ehmann W 1958 Chem. Ber. 91 1713
8. Treibs A, Jacob K and Dietl A 1967 Liebigs Ann. Chem. 702112
9. Loev B, Greenwald R B, Goodman M M and Zirkle C L 1971 J. Med. Chem. 14849
10. Soriano-Garcia M, Xocoyotl Serrano J S, Garcia Jimenez J and Toscano R A 1986 Acta Crystallogr. C42 1828
11. Unpublished results
12. (a) Somerville L F and Allen C F H 1943 Org. Synth. 2 81; (b) Khan M S Y and Siddiqui A A 2000 Indian J. Chem. B39 614

[^0]: *For correspondence

